Sample EduNgr.com JAMB Past Questions

JAMB » Mathematics » 2014

Click EduNgr.com for FREE educational resources, school news, past questions, and more...

Get the complete JAMB » Mathematics past questions & answers, with many years, including past & recent years past questions at www.eduNgr.com OR Install EduNgr JAMB & Post-UTME App (OFFLINE USE, No Internet connecct required)

- 1 Find the value of $110111_2 + 10100_2$
- **A** 1101011₂
- **B** 1001001₂
- **©** 1001011₂
- **D** 1001111₂

- 2 A woman bought a grinder for N60,000. She sold it at a loss of 15%. How much did she sell it?
- **N**53,000
- **B** N52,000
- **O** N51,000
- **D** N50,000

- 3 Express the product of 0.00043 and 2000 in standard form.
- \triangle 8.6 x 10⁻³
- **B** 8.3 x 10⁻²
- \odot 8.6 x 10⁻¹
- **0** 8.6 x 10

- 4 A man donates 10% of his monthly net earnings to his church. If it amounts to N4,500, what is his net monthly income?
- **N40,500**
- **B** N45,000
- **O** N52,500
- **D** N62,000

- 5 If $\log 7.5 = 0.8751$, evaluate $2 \log 75 + \log 750$
- **△** 6.6252
- **B** 6.6253
- **©** 66.252
- **D** 66.253

EduNgr.com JAMB Past Questions

- 6 Solve for x in $8x^{-2} = 2/25$
- **A** 4
- **B** 6
- **C** 8
- **D** 10

- 7 Simplify $\frac{2\sqrt{2}-\sqrt{3}}{\sqrt{2}+\sqrt{3}}$
- $4.0 \times 3\sqrt{6} 7$
- **B** $3\sqrt{6}-7$
- $3\sqrt{6}-1$

Visit <u>EduNgr.com</u> for FREE educational resources, school news, past questions, and more...

- 8 Evaluate $Log_28 + Log_216 Log_24$
- **A** 3
- **B** 4
- **C** 5
- **D** 6

- - 9 If $P = \{1,2,3,4,5\}$ and $P \cup Q = \{1,2,3,4,5,6,7\}$,

list the elements in Q

- **A** {6}
- **B** {7}
- **c** {6,7}
- **D** {5,6}

10 If gt^2 - k - w = 0, make g the subject of the

formula

- $\frac{k+w}{t^2}$
- f C $\frac{k+w}{t}$

EduNgr.com JAMB Past Questions

11 Factorize $2y^2 - 15xy + 18x^2$

$$\triangle$$
 (2y - 3x) (y + 6x)

$$\mathbf{B}$$
 (2y - 3x) (y - 6x)

$$(2y + 3x) (y - 6x)$$

$$\bigcirc$$
 (3y + 2x) (y - 6x)

12 Find the value of k if y - 1 is a factor of $y^3 + 4y^2$

$$+ky-6$$

- 13 y varies directly as w^2 . When y = 8, w = 2. Find y when w = 3
- **A** 18
- **B** 12
- **c** 9
- **D** 6

14 P varies directly as Q and inversely as R. When

Q = 36 and R = 16, P = 27. Find the relation between P, Q and R.

- $P = \frac{Q}{12R}$
- $oldsymbol{B}P=rac{12Q}{R}$

$$P = 12QR$$

$$\mathbf{D} P = \frac{12}{QR}$$

Visit <u>EduNgr.com</u> for FREE educational resources, school news, past questions, and more...

- 15 What is the solution of $\frac{x-5}{x+3} < -1$?
- **A** -3 < x < 1
- **B** x < -3 or x > 1
- \circ -3 < x < 5

EduNgr.com JAMB Past Questions

16 Evaluate the inequality $\frac{x}{2} + \frac{3}{4} \le \frac{5x}{6} - \frac{7}{12}$

- $\land x \geq 4$
- $\mathbf{B} \ x \leq 3$
- **c** $x \ge -3$
- $\mathbf{D} x \leq -4$

- 17 The 4th term of an A.P. is 13 while the 10th term is 31. Find the 24th term.
- A 89
- **B** 75
- **c** 73
- **D** 69

18 What is the common ratio of the G.P.

$$(\sqrt{10} + \sqrt{5}) + (\sqrt{10} + 2\sqrt{5}) + \dots$$
?

- $\mathbb{B}\sqrt{5}$
- **C** 3
- **D** 5

- 19 A binary operation * is defined by $x * y = x^y$. If x * 2 = 12 x, find the possible values of x
- **A** 3,4
- **B** 3,-4
- \mathbf{c} -3,4
- \bigcirc -3,-4

20 Find y, if $\begin{pmatrix} 5 & -6 \\ 2 & -7 \end{pmatrix} \begin{pmatrix} 5 \\ 2 \end{pmatrix} = \begin{pmatrix} 7 \\ -11 \end{pmatrix}$

- **B** 5
- **C** 3
- **D** 2

EduNgr.com JAMB Past Questions

21 If
$$\begin{vmatrix} -x & 12 \\ -1 & 4 \end{vmatrix} = -12$$
, find x

- **A** -6
- **B** -2
- **C** 3
- **D** 6

Visit <u>EduNgr.com</u> for FREE educational resources, school news, past questions, and more...

- **A** 12
- **B** 10
- **c** -1
- **D** -2

How many sides has a regular polygon whose interior angle is 135°

- **A** 12
- **B** 10
- **c** 9
- **D** 8

24 A cylindrical tank has a capacity of 6160m³.

What is the depth of the tank if the radius of its base is 28cm?

- **A** 8.0m
- **B** 7.5m
- **6** 5.0m
- **D** 2.5m

- The locus of a dog tethered to a pole with a rope of 4m is a
- △ circle with diameter 4m
- B circle with radius 4m
- c semi-circle with diameter 4m
- n semi-circle with radius 4m

EduNgr.com JAMB Past Questions

- 26 Find the mid point of S(-5, 4) and T(-3, -2)
- **A** -4, 2
- **B** 4, -2
- **c** -4, 1
- **D** 4, -1

- The gradient of a line joining (x,4) and (1,2) is
- $\frac{1}{2}$. Find the value of x
- **A** 5
- **B** 3
- **C** -3
- **D** -5

28 Calculate the mid point of the line segment y -

4x + 3 = 0, which lies between the x-axis and y-axis.

$$(3 -38 2)$$

$$(-2 \quad 2 \quad 2 \quad 2)$$

$$\bigcirc$$
 $(-2 \quad 3 \quad 3 \quad 2)$

Visit <u>EduNgr.com</u> for FREE educational resources, school news, past questions, and more...

- 29 Find the equation of the straight line through (-2,
- 3) and perpendicular to 4x + 3y 5 = 0

$$\triangle 3x - 4y + 18 = 0$$

$$3x + 2y - 18 = 0$$

$$\mathbf{C} 4x + 5y + 3 = 0$$

- 30 If $\sin \theta = \frac{12}{13}$, find the value of $1 + \cos \theta$
- $\frac{25}{13}$
- **B** $\frac{18}{13}$
- $\frac{8}{13}$
- $\frac{5}{13}$

EduNgr.com JAMB Past Questions

- 31 If $y = 4x^3 2x^2 + x$, find $\frac{\delta y}{\delta x}$
- $8x^2 2x + 1$
- **B** $8x^2 4x + 1$

$$\circ$$
 12x² - 2x + 1

$$12x^2 - 4x + 1$$

32 If
$$y = \cos 3x$$
, find $\frac{\delta y}{\delta x}$

- $\triangle \frac{1}{3}\sin 3x$
- $\mathbf{B} \frac{1}{3}\sin 3x$
- **©** 3 sin 3x
- **D** -3 sin 3x

- 33 Find the minimum value of $y = x^2 2x 3$
- **A** 4
- **B** 1
- **C** -1

34 Evaluate $\int \sin 2x dx$

$$\triangle \cos 2x + k$$

$$-\frac{1}{2}\cos 2x + k$$

$$\bigcirc$$
 -cos 2x + k

35 Evaluate
$$\int (2x+3)^{\frac{1}{2}} \delta x$$

$$\Lambda \frac{1}{12}(2x+3)^6 + k$$

$$\frac{1}{3}(2x+3)^{\frac{1}{2}}+k$$

$$\frac{1}{3}(2x+3)^{\frac{3}{2}}+k$$

$$\bigcirc \frac{1}{12}(2x+3)^{\frac{3}{4}} + k$$

Visit <u>EduNgr.com</u> for FREE educational resources, school news, past questions, and more...

EduNgr.com JAMB Past Questions

- 36 The mean of 2 4, 4 + t, 3 2t and t 1 is
- A t
- B -t
- **c** 2
- \bigcirc -2

Find the mode of the distribution above

- 38 Find the median of 5,9,1,10,3,8,9,2,4,5,5,5,7,3 and 6
- **A** 6
- **B** 5
- **C** 4
- **D** 3

- 39 Find the standard deviation of 5, 4, 3, 2, 1
- $\Lambda \sqrt{2}$
- $lue{B}\sqrt{3}$

$$\bigcirc$$
 $\sqrt{10}$

- In how many ways can a team of 3 girls be selected from 7 girls?
- $\frac{7!}{4!}$
- $\frac{7!}{3!4!}$
- $\frac{7!}{2!5!}$

EduNgr.com JAMB Past Questions

The table above represents the outcome of throwing a

die 100 times. What is the probability of obtaining at least a 4?

- $\mathbf{A} \quad \frac{1}{5}$
- $\mathbb{B} \ \frac{1}{2}$
- $\frac{2}{5}$
- $\frac{3}{4}$

42 A number is chosen at random from 10 to 30

both inclusive. What is the probability that the number is divisible by 3?

- $\mathbf{B} \ \frac{1}{10}$
- $\frac{1}{3}$

Visit <u>EduNgr.com</u> for FREE educational resources, school news, past questions, and more...

43

From the venn diagram above, the shaded parts represent

- \bigcirc $(P \cup Q) \cup (P \cup R)$

In the figure above, KL//NM, LN bisects < KNM. If angles KLN is 54° and angle MKN is 35°, calculate the size of angle KMN.

- A 91°
- **B** 89°
- **©** 37°
- **D** 19°

45

From the figure above, what is the value of p?

- **A** 135°
- **B** 90°
- **©** 60°
- **D** 45°

EduNgr.com JAMB Past Questions

46

Find the value of x in the figure above

- $\triangle 20\sqrt{3}$ cm
- $\mathbf{B} 10\sqrt{3}$ cm

- $5\sqrt{3} \text{cm}$ $4\sqrt{3} \text{cm}$

in the figure above, what is the equation of the line that passes the y-axis at (0,5) and passes the x-axis at (5,0)?

B
$$y = -x + 5$$

$$y = x - 5$$

$$y = -x - 5$$

The pie chart above shows the monthly distribution of a man's salary on food items. If he spent N8,000 on rice, how much did he spent on yam?

- **A** N42,000
- **B** N18,000
- **©** N16,000
- **D** N12,000

Answers: JAMB Past Questions: JAMB » Mathematics » 2014

1. **C**

2. **C**

$$\frac{CP-SP}{CP} = 100\%$$

$$15\% = \frac{60000 - x}{60000} \times 100\%$$

$$15\% imes 60000 = (60000 - x)100\%$$

$$60000 - x = \frac{15\% \times 60000}{100\%}$$

$$60000 - x = 3 \times 3000$$

$$60000 - x = 9000$$

$$x = 60000 - 9000$$

$$x = N51,000$$

3. **C**

0.00043 x 2000

$$= 43 \times 10^{-5} \times 2 \times 10^{3}$$

$$= 43 \times 2 \times 10^{-5+3}$$

$$= 86 \times 10^{-2}$$

$$= 8.6 \times 10^{1} \times 10^{-2}$$

$$= 8.6 \times 10^{-1}$$

4. **B**

Let;

M = Man monthly net earnings

Then;

$$ext{N4500} = rac{10\%}{100\%} imes M$$

$$M = \frac{\text{N4500} \times 100\%}{10\%}$$

$$M = N45,000$$

5. **B**

If
$$\log 7.5 = 0.8751$$

Then $2\log 75 + \log 750$
= $2(1.8751) + 2.8751$
= $3.7502 + 2.8751$
= 6.6253

6. **D**

$$8x^{-2} = 2/25$$

$$x^{-2} = 2/25 \times 1/8$$

$$x^{-2} = 2/200$$

$$x^{-2} = 1/100$$

$$1/x^2 = 1/100$$

$$x^2 = 100$$

$$x = 10$$

$$=rac{2\sqrt{2}-\sqrt{3}}{\sqrt{2}+\sqrt{3}} imesrac{\sqrt{2}-\sqrt{3}}{\sqrt{2}+\sqrt{3}}$$

$$= \frac{2\sqrt{2}(\sqrt{2}) + (2\sqrt{2})(-\sqrt{3}) - \sqrt{3}(\sqrt{2}) - \sqrt{3}(-\sqrt{3})}{(\sqrt{2})^2 - (\sqrt{3})^2}$$

$$=rac{2 imes 2-2\sqrt{6}-\sqrt{6}+3}{2-3}$$

$$=\frac{4-3\sqrt{6}+3}{-1}$$

$$= \frac{7 - 3\sqrt{6}}{-1}$$

$$=\frac{7}{-1}-\frac{3\sqrt{6}}{-1}$$

$$= -7 + 3\sqrt{6}$$

$$=3\sqrt{6}-7$$

8. **C**

$$=log_{2}rac{8 imes16}{4}$$

$$=log_232$$

$$=log_22^5$$

$$=5log_22$$

$$=5\times1$$

$$=5$$

9. **C**

$$Q = (P \cup Q) - P$$

{6,7}

10. A

$$gt^2 - k - w = 0$$

$$gt^2 = k + w$$

$$g=rac{k+w}{t^2}$$

11. **B**

$$2y^2 - 15xy + 18x^2$$

$$2y^2 - 12xy - 3xy + 18x^2$$

$$2y(y - 6x) - 3x(y - 6x)$$

$$(2y - 3x) (y - 6x)$$

12. **D**

if y - 1 is a factor of $y^3 + 4y^2 + ky - 6$, then

$$f(1) = (1)^3 + 4(1)^2 + k(1) - 6 = 0$$
 (factor theorem)

$$1 + 4 + k - 6 = 0$$

$$5 - 6 + k = 0$$

$$-1 + k = 0$$

$$k = 1$$

13. **A**

$$y \propto w^2$$

$$y = kw^2$$

$$8 = k(2)^2$$

$$8 = k(4)$$

$$k = 8/4$$

$$k = 2$$

Thus
$$y = 2w^2$$

When $w = 3$, $y = 2(3)^2$

$$y = 2 \times 9 = 18$$

14. **B**

$$P \propto rac{Q}{R}$$

$$P=K\tfrac{Q}{R}$$

When
$$Q = 36$$
, $R = 16$, $P = 27$

Then substitute into the equation

$$27 = K \frac{36}{16}$$

$$K=rac{27 imes16}{36}$$

$$K = 12$$

So the equation connecting P, Q and R is

$$P = \frac{12Q}{R}$$

15. **A**

Consider the range -3 < x < -1

$$= \{ -2, -1, 0 \}$$
, for instance

When x = -2,

$$\frac{-2-5}{-2+3} < -1$$

$$\frac{-7}{1} < -1$$

When x = -1,

$$\frac{-1-5}{-1+3} < -1$$

$$\frac{-6}{2} < -1$$

When x = 0,

$$\frac{0-5}{0+3} < -1$$

$$\frac{-5}{3} < -1$$

Hence -3 < x < 1

16. A

$$\frac{x}{2} + \frac{3}{4} \le \frac{5x}{6} - \frac{7}{12}$$

$$12\frac{x}{2} + 12\frac{3}{4} \le 12\frac{5x}{6} - 12\frac{7}{12}$$

$$6x + 9 \le 10x - 7$$

$$6x - 10x \le -7 - 9$$

$$-4x \le -16$$

$$-4x/-4 \ge -16/-4$$

$$x \geq 4$$

17. **C**

$$a + 3d = 13 \dots (1)$$

$$a + 9d = 31 \dots (2)$$

$$(2) - (1)$$
: $6d = 18$

$$d = 18/6 = 3$$

From
$$(1)$$
, $a + 3(3) = 13$

$$a + 9 = 13$$

$$a = 13 - 9 = 4$$

Hence,

$$T_{24} = a + 23d$$

$$T_{24} = 4 + 23(3)$$

$$T_{24} = 4 + 69$$

$$T_{24} = 73$$

18. A

Common ratio r of the G.P is

$$r=rac{T_n+1}{T_n}=rac{T_2}{T_1}$$

$$r=rac{\sqrt{10}+2\sqrt{5}}{\sqrt{10}+\sqrt{5}}$$

$$r=rac{\sqrt{10}+2\sqrt{5}}{\sqrt{10}+\sqrt{5}} imesrac{\sqrt{10}-\sqrt{5}}{\sqrt{10}-\sqrt{5}}$$

$$= \frac{(\sqrt{10})(\sqrt{10}) + (\sqrt{10})(-\sqrt{5}) + (2\sqrt{5})(\sqrt{10}) + (2\sqrt{5})(-\sqrt{5})}{(\sqrt{10})^2 - (\sqrt{5})^2}$$

$$\tfrac{10-\sqrt{50}+2\sqrt{50}-10}{10-5}$$

$$\frac{\sqrt{50}}{5}$$

$$\frac{\sqrt{25{ imes}2}}{5}$$

$$\frac{5\sqrt{2}}{5}$$

$$\sqrt{2}$$

19. **B**

$$x * y = x^{y}$$

 $x * 2 = 12 - x$

Thus by comparison,

$$x = x, y = 2$$

But
$$x * y = x * 2$$

$$x^y = 12 - x$$

$$x^2 = 12 - x$$

$$x^2 + x - 12 = 0$$

$$x^2 + 4x - 3x - 12 = 0$$

$$x(x+4) - 3(x+4) = 0$$

$$(x - 3)(x + 4) = 0$$

$$x - 3 = 0$$
 or $x + 4 = 0$

So
$$x = 3$$
 or $x = -4$

$$egin{pmatrix} 5 & -6 \ 2 & -7 \end{pmatrix} egin{pmatrix} 5 \ 2 \end{pmatrix} = egin{pmatrix} 7 \ -11 \end{pmatrix}$$

By matrices multiplication;

$$5x - 6y = 7 \dots (1)$$

$$2x - 7y = -11 \dots (2)$$

$$2 \times (1)$$
: $10x - 12y = 14$ (3)

$$5 \times (2)$$
: $10x - 35y = -55$ (4)

$$(3) - (4): 23y = 69$$

$$y = 69/23 = 3$$

$$egin{bmatrix} -x & 12 \ -1 & 4 \end{bmatrix} = -12$$

$$-4x - (-1)12 = -12$$

$$-4x + 12 = -12$$

$$-4x = -12 - 12$$

$$-4x = -24$$

$$x = 6$$

22. **D**

$$= 0(28 - 40) - 3(4 - 0) + 2(5 - 0)$$

$$= 0(-12) - 3(4) + 2(5)$$

$$= 0 - 12 + 10$$

$$= -2$$

23. **D**

If each interior angle of the polygon is 135° , then each exterior angle is 180° - 135° = 45° . Hence, number of sides =

$$\frac{360^{o}}{\text{one exterior angle}}$$

$$\frac{360^o}{45^o}$$

$$=8$$

24. **D**

Using
$$V=\pi r^2 h$$

$$6160 = 22/7 \times 28 \times 28 \times h$$

$$h = \frac{6160}{22 \times 4 \times 28}$$

$$h=2.5m$$

25. **B**

26. **C**

Mid point of S(-5, 4) and T(-3, -2) is

$$\left[\frac{1}{2}(-5+-3), \frac{1}{2}(4+2)\right]$$

$$[rac{1}{2}(x_1+x_2),rac{1}{2}(y_1+y_2)]$$

$$\left[\frac{1}{2}(-8), \frac{1}{2}(2)\right]$$

$$[-4, 1]$$

27. A

Gradient m =
$$\frac{y_2 - y_1}{x_2 - x_1}$$

$$\frac{1}{2} = \frac{2-4}{1-x}$$

$$1 - x = 2(2 - 4)$$

$$1 - x = 4 - 8$$

$$1 - x = -4$$

$$-x = -4 - 1$$

$$x = 5$$

$$y - 4x + 3 = 0$$

When
$$y = 0$$
, $0 - 4x + 3 = 0$

Then
$$-4x = -3$$

$$x = 3/4$$

So the line cuts the x-axis at point (3/4, 0).

When
$$x = 0$$
, $y - 4(0) + 3 = 0$

Then
$$y + 3 = 0$$

$$y = -3$$

So the line cuts the y-axis at the point (0, 3)

Hence the midpoint of the line y - 4x + 3 = 0, which lies between the x-axis and the y-axis is;

$$[\frac{1}{2}(x_1+x_2), \frac{1}{2}(y_1+y_2)]$$

$$\left[\frac{1}{2}(\frac{3}{4}+0), \frac{1}{2}(0+-3)\right]$$

$$\left[\frac{1}{2}\left(\frac{3}{4}\right), \frac{1}{2}(-3)\right]$$

$$[\frac{3}{8}, \frac{-3}{2}]$$

$$4x + 3y - 5 = 0$$
 (given)

The equation of the line perpendicular to the given line takes the form 3x - 4y = k

Thus, substitution x = -2 and y = 3 in 3x - 4y = k gives;

$$3(-2) - 4(3) = k$$

$$-6 - 12 = k$$

$$k = -18$$

Hence the required equation is 3x - 4y = -18

$$3x - 4y + 18 = 0$$

30. **B**

31. **D**

If
$$y = 4x^3 - 2x^2 + x$$
, then;

$$\frac{\delta y}{\delta x} = 3(4x^2) - 2(2x) + 1$$

$$= 12x^2 - 4x + 1$$

32. **D**

$$y = \cos 3x$$

Let u = 3x so that $y = \cos u$

Now,
$$\frac{\delta y}{\delta x} = 3$$
,

$$rac{\delta y}{\delta x}=-sinu$$

By the chain rule,

$$\frac{\delta y}{\delta x} = \frac{\delta y}{\delta u} \times \frac{\delta u}{\delta x}$$

$$\frac{\delta y}{\delta x} = (-\sin u)(3)$$

$$\frac{\delta y}{\delta x} = -3\sin u$$

$$\frac{\delta y}{\delta x} = -3\sin 3x$$

33. **D**

$$y = x^2 - 2x - 3$$
,

Then
$$\frac{\delta y}{\delta x} = 2x - 2$$

But at minimum point, $\frac{\delta y}{\delta x} = 0$,

Which means 2x - 2 = 0

$$2x = 2$$

$$x = 1$$
.

Hence the minimum value of $y = x^2 - 2x - 3$ is;

$$y_{min} = (1)^2 - 2(1) - 3$$

$$y_{min} = 1 - 2 - 3$$

$$y_{min} = -4$$

34. **C**

$$\int \sin 2x dx = \frac{1}{2}(-\cos 2x) + k$$

$$-\frac{1}{2}\cos 2x + k$$

35. **C**

$$\int (2x+3)^{rac{1}{2}} \delta x$$

let
$$u = 2x + 3$$
, $\frac{\delta y}{\delta x} = 2$

$$\delta x = \frac{\delta u}{2}$$

Now
$$\int (2x+3)^{rac{1}{2}} \delta x = \int u^{rac{1}{2}} \cdot rac{\delta x}{2}$$

$$=rac{1}{2}\int u^{rac{1}{2}}\delta u$$

$$=rac{1}{2}u^{rac{3}{2}} imes rac{2}{3}+k$$

$$=\frac{1}{3}u^{\frac{3}{2}}+k$$

$$= \frac{1}{3}(2x+3)^{\frac{3}{2}} + k$$

$$Mean x = \frac{\sum x}{n}$$

$$= [(2-t)+(4+t)+(3-2t)+(2+t)+(t-1)\div] 5$$

$$= [11 - 1 + 3t - 3t] \div 5$$

$$= 10 \div 5$$

$$=2$$

37. **D**

38. **B**

First arrange the numbers in order of magnitude; 1,2,3,3,4,5,5,5,5,6,7,8,9,9,10

Hence the median = 5

Mean
$$x = \frac{\sum x}{n}$$

$$=\frac{5+4+3+2+1}{5}$$

$$= \frac{15}{5}$$

$$=3$$

\boldsymbol{x}	d = x - 3	d^2
5	2	4
4	1	1
3	0	0
2	-1	1
1	-2	4
		$\sum d^2 + 10$

Hence, standard deviation;

$$=\sqrt{\frac{\sum d^2}{n}}=\sqrt{\frac{10}{5}}$$

$$=\sqrt{2}$$

40. **C**

A team of 2 girls can be selected from 7 girls in 7C_3

$$=\frac{7!}{(7-3)!3!}$$

$$=rac{7!}{4!3!}ways$$

Let E demote the event of obtaining at least a 4 Then n(E) = 16 + 10 + 14 = 40

Hence, prob (E) = $\frac{n(E)}{n(S)}$

$$=\frac{40}{100}$$

$$=\frac{2}{5}$$

42. **C**

Sample space $S = \{10, 11, 12, \dots 30\}$

Let E denote the event of choosing a number divisible by 3

Then $E = \{12, 15, 18, 21, 24, 27, 30\}$ and n(E) = 7

Prob (E) =
$$\frac{n(E)}{n(E)}$$

Prob (E) =
$$\frac{7}{21}$$

Prob (E) =
$$\frac{1}{3}$$

In the diagram above, $\alpha = 54^{\circ}$ (alternate angles; KL||MN) < KNM = 2α (LN is bisector of < KNM) = 108°

$$35^{\circ} + < \text{KMN} + 108^{\circ} = 180^{\circ} (\text{sum of angles of } \triangle)$$

$$< KMN + 143^{\circ} = 180^{\circ}$$

$$< KMN = 180^{\circ} - 143^{\circ}$$

$$= 37^{0}$$

45. **B**

In the figure above, $q^0 = 30^0$ (vertically opposite angles)

$$(P + 2q)^{o} + 30^{o} = 180^{o}$$
 (angles on a straight line)

$$p + 2 \times 30^{\circ} + 30^{\circ} = 180^{\circ}$$

$$p + 60^{\circ} + 30^{\circ} = 180^{\circ}$$

$$p + 90^{\circ} = 180^{\circ}$$

$$p = 180^{\circ} - 90^{\circ}$$

$$=90^{0}$$

46. **B**

In the figure above, $\frac{x}{\sin 60^{\circ}} = \frac{10}{\sin 30^{\circ}}$ (Sine rule)

$$\chi = \frac{10\sin 60^o}{\sin 30^o}$$

$$= 10 \text{ x } \frac{\sqrt{3}}{2} \times \frac{1}{2}$$

$$= 10 \times \frac{\sqrt{3}}{2} \times \frac{2}{1}$$

$$=10\sqrt{3}$$
cm

47. B

$$(x_1, y_1) = (0,5)$$

$$(x_2, y_2) = (5, 0)$$

Using
$$\frac{y-y_1}{y_1-y_1} = \frac{x-x_1}{x_1-x_1}$$

$$\frac{y-5}{0-5} = \frac{x-0}{5-0}$$

$$\frac{y-5}{-5} = \frac{x}{5}$$

$$5(y - 5) = -5x$$

$$y - 5 = -x$$

$$x + y = 5$$

$$y = -x + 5$$

Angle of sector subtended by yam

$$=360^{\circ} - (70 + 80 + 50)^{\circ}$$

$$=360^{\circ} - 200^{\circ}$$

$$= 160^{\circ}$$

But
$$\frac{80^{\circ}}{360^{\circ}}$$
 x T = 8000

$$T = \frac{8000 \times 360^{\circ}}{80^{\circ}}$$

$$= N36,000$$

Hence the amount spent on yam = $\frac{160^{\circ}}{260} \times N36,000$

= N16,000

Get the complete JAMB » Mathematics past questions & answers, with many years, including past & recent years past questions at www.eduNgr.com OR Install EduNgr JAMB & Post-UTME App (OFFLINE USE, No Internet connecct required)